Variability from Equipment to Circuit: The Horizon2020 Project SUPERAID7

Juergen Lorenz Fraunhofer IISB, Erlangen, Germany

SISPAD 2016 Workshop "Variability-Aware Design Technology Co-Optimization" Nuremberg, September 5, 2016

Workshop on Variability-Aware Design Technology Co-Optimization

OUTLINE

- Introduction
- Consortium and project data
- Project structure
- Methodology used
- Topography Simulation for Advanced 3D Devices
- Interconnect Variability Simulation
- Some further glimpse on first results
- Conclusion

Introduction: Objectives of the SUPERAID7 Project

- Full project name "Stability Under Process Variability for Advanced Interconnects and Devices Beyond 7nm node"
- Development of a software system for the simulation of the impact of systematical and statistical process variations for advanced extended CMOS devices and interconnects
- Build on the results from SUPERTHEME
- Close interaction with leading European technology development projects (esp. KET Pilot Lines) via partner CEA/Leti and some members of the SUPERAID7 Industrial and Scientific Advisory Board
- Continued attention on data reduction / hierarchical simulation from discretization of equipment to compact models – and on correlations
- Specific focus on advanced integrated topography simulation, carrier transport models for nanowire transistors and/or alternative channel materials, interconnect modeling and simulation

Workshop on Variability-Aware Design Technology Co-Optimization

Introduction: Variations to be studied

- Various systematic variations occuring in most process steps
 - Variations in topograpohy steps especially important for 3D devices
- Layout effects example Double Patterning
- Statistical varitions directly affecting transistor behavior: RDF, MGG, LER/LWR
- Interconnect variability: MGG, LER/LWR

Figures: Copper granularity and LER in interconnnects (from Glasgow University)

Slide 4

Workshop on Variability-Aware Design Technology Co-Optimization

Consortium and Project Data

- Coordinator: Fraunhofer Institute for Integrated Systems and Device Technology IISB, Erlangen, Germany
- Further project partners
 - SW house: GSS (now a Synopsys company), Glasgow, UK
 - Research institute: CEA/Leti, Grenoble, France
 - Universities: Univ. Glasgow, UK; TU Wien, Austria
- Project period: 01/2016 12/2018
- EC funding: 3,377,527.50 € from Horizon 2020 ICT25 Call "Generic micro- and nano-electronic technologies"
- See www.superaid7.eu

Workshop on Variability-Aware Design Technology Co-Optimization

SISPAD 2016

Fraunhofer

> niversity Glasgow

111111111111

SUPERAID7 Project Structure

USB

💹 Fraunhofer

Workshop on Variability-Aware Design Technology Co-Optimization

SUPERAID7 Project Structure

Methodology Used Simulation levels and tools used

Extension and closer integration of system from preceding SUPERTHEME project

- Equipment simulation: Q-VT (Quantemol), CFD-ACE (ESI Group)
- Process simulation:
 - Lithography: Dr.LiTHO (Fraunhofer)
 - Etching/deposition: ANETCH / DEP3D (Fraunhofer); Vienna TS
 - Implantation/annealing: Sentaurus Process (SNPS)
- Device simulation: GARAND (GSS)
- New interconnect simulator by GU/GSS/TU Wien
- Statistical compact model extraction: MYSTIC (GSS)
- (Circuit simulation: RandomSpice (GSS))

Slide 8

Workshop on Variability-Aware Design Technology Co-Optimization

Topography Simulation for Advanced 3D Devices Motivation

- Motivation: Small features/pitches need Double Patterning or EUV Lithography
- Double Patterning introduces additional sources of variability:
 - Pattern effects
 - Difference between first and second incremental lithographay step
- Especially 3D devices affected by details of lithography/deposition/etching steps
 - E.g. resist shape, not only footprint
- ⇒ Advanced integrated topography simulation necessary

SRAM layout and SADP simulation – see presentation O14.1

Workshop on Variability-Aware Design Technology Co-Optimization

Topography Simulation for Advanced 3D Devices Motivation (II)

USB

- SADP depending on details of patterns, lithography, deposition and etching steps:
 - Differences between inner and outer lines
 - Some process variations may affect final feature sizes and/or pitches
 - Effect of some other process variations may be stonghly decreased
- Litho-Freeze-Litho-Etch and Litho-Etch-Litho-Etch Double Patterning: Generally difference between features generated in firts and second incremental litho step
- See presentation O14.1

Workshop on Variability-Aware Design Technology Co-Optimization

Topography Simulation for Advanced 3D Devices Background tool from IISB: Dr. LiTHO

Dr. LiTHO Aerial image of the poly laver of an SRAM cell Accurate and efficient imaging algorithms: Dr.Image Electromagnetic field solvers: Waveguide (RCWA), TASPAL **Rigorous simulation** (FDTD) of an EUV-mask Advanced optimization algorithms: Ginga, PSO, ... Usage Flexible simulation of Available under Linux and different options for Windows double-patterninglithography Highly flexible and easy to combine with other software Python Slide 11 💹 Fraunhofer Workshop on Variability-Aware **SISPAD 2016 Design Technology Co-Optimization** Nuremberg, September 5, 2016

Topography Simulation for Advanced 3D Devices Integration Lithography/Deposition/Etching Simulation

Directional etching ------Close integration between Dr.LiTHO, -0.04 -0.06 [mn] ANETCH/DEP3D (IISB), and Vienna TS -0.1 -0.12 Impact of realistic mask v (um) shape simulated with Dr.LiTHO for Isotropic etching directional etching -0.02 -0.04 anisotropic etching -0.06 [um] : -0.0 simulated with Vienna TS -0.1 -0.13

Slide 12

Workshop on Variability-Aware Design Technology Co-Optimization

Interconnect Variability Simulation Outline

- Joint work by GSS, GU and TU Vienna, including:
 - Development of a 3-D Laplace-like solver for the evaluation of capacitive and resistive elements in advanced interconnect wiring
 - Use of process variability data
 - Extraction of compact RC circuit models in format compatible for circuit simulation
- \Rightarrow New tool CONNECTCAD

SISPAD 2016

Slide 13 Nuremberg, September 5, 2016

Workshop on Variability-Aware Design Technology Co-Optimization

Interconnect Variability Simulation

Example for First Results

- Introducing statistical variability for Nominal Process Corner
- Top line left /right: LER and MGG
- Example: Distribution of a SINGLE-LINE (R_max) and INTER_LINE (C_max) in the system, due to LER

Workshop on Variability-Aware Design Technology Co-Optimization

USB

Some further glimpse on first results

6 related presentations at SISPAD 2016 conference

- O1.3: T. Sadi et al., "One-dimensional Multi-Subband Monte Carlo Simulation of Charge Transport in Si Nnaowire Transistors"
- O10.1: L. Wang et al., "TCAD Proven Compact Modelling Re-centering Technology for Early 0.x PDKs
- O13.2: L. Bourdet et al., "High and low-field contact Resistances in Trigate Devices in a Non-Equilibrium Green's Functions"
- O20.1: Z. Zeng et al., "Carrier scattering by workfunction fluctuations and interface dipoles in high-/metal gate stacks"
- P4: T. Al-Ameri et al., "Impact of strain on the performance of Si nanowires transistors at the scaling limit: A 3D Monte Carlo / 2D Poisson Schrodinger simulation study"
- P15: Z. Zeng et al., "Size-dependent carrier mobilities in rectangular silicon nanowire devices

Slide 15 Nuremberg, September 5, 2016

Workshop on Variability-Aware Design Technology Co-Optimization

Conclusions

- Within SUPERAID7 a program system for the simulaiton of the impact of variations from equipment to circuit level is being developed
- The project especially aims at extended CMOS down to 7 nm and below
- Besides required physical device models core activities deal with integrated topography simulaiton and with interconnect simulation.

SUPERAID

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 318458.

HSB

Workshop on Variability-Aware Design Technology Co-Optimization

