Performance and Design Considerations for Gate-All-around Stacked-NanoWires FETs

S. Barraud, V. Lapras, B. Previtali, M.P. Samson, J. Lacord, S. Martinie, M.-A. Jaud, S. Athanasiou, F. Triozon, O. Rozeau, J.M. Hartmann, C. Vizioz, C. Comboroure, F. Andrieu, J.C. Barbé, M. Vinet, and T. Ernst

> CEA-LETI, Minatec Campus, Grenoble, France STMicroelectronics, Crolles, France



## **Context of this work**

#### **Two main MOSFET architectures for advanced CMOS**



### **Context of this work**

Plenty of space ... at the top !



Max M. Shulaker et al., Nature 2017, Stanford

# 2017 press releases

#### May | 2017

Samsung set to lead the future of foundry with comprehensive process roadmap down to 4nm 4LPP (4nm Low Power Plus): 4LPP will be the first implementation of **next generation device** architecture – MBCFET<sup>™</sup> structure (Multi Bridge Channel FET). MBCFET<sup>™</sup> is Samsung's unique GAAFET (**Gate All Around FET**) technology that uses a **Nanosheet device** to overcome the physical scaling and performance limitations of the FinFET architecture. *https://news.samsung.com/global/samsung-set-to-lead-the-future-of-foundry-with-comprehensive-process-roadmap-down-to-4nm* 

June | 2017 IBM claims 5nm Nanosheet breakthough IBM researchers and their partners have developed a new transistor architecture based on Stacked Silicon Nanosheets that they believe will make FinFETs obsolete at the 5nm node http://www.eetimes.com/document.asp?doc\_id=1331850&

#### GAA MOSFET devices are becoming an industrial reality

### **3D stacked structures**

#### 15 years of innovation

10

10<sup>-6</sup>

 $10^{-8}$ 

10<sup>-10</sup>

10<sup>-12</sup>

-1

**IEDM 2008** 

€

Drain Current I<sub>D</sub>

V\_\_\_=0.8 to -1.4V

step = -0.2V

-0.5 0

C. Dupré et al.

0.5

Gate 1 voltage V<sub>G1</sub> (V)

LETI

1 1.5

#### MultiBridge Channel MOSFET

S.Y. Lee et al SAMSUNG IEEE Trans Nano 2003



#### First Stacked NW CMOS



T. Ernst et al. , IEDM06 Nanowires with independent gates

### Internal spacers introduction

#### **High density**



A. Hubert et al.

IEDM 2008 -LETI

IBM N. Loubet & al. (VLSI 2017) talline Strain booster



T. Ernst et al.

Micro. Eng. 2011

S. Barraud et al. IEDM 2016

### From FinFet to stacked NW



[1] S. Natarajan et *al.*, IEDM, 2014.[2] H. Mertens et *al.*, VLSI Technology, 2016.



#### Same process (LETI 2008 – IEDM) TCAD



# **Motivation/Objective**



### Outline

- Performance/Design consideration
- Device Fabrication
  - Inner spacer
  - SiGe S/D
- Strain Characterization
  - Precession Electron Diffraction
- Perspectives
- Summary and Conclusion

### FinFET







#### W<sub>eff</sub>=circonference of Fin (2H<sub>Fin</sub>+W) 9.

### **FinFET to GAA Nanowires**

#### Layout footprint (nm)



$$V_{DS} = \mu \times C_{ox} \times \frac{W_{eff}}{L_G} \left[ (V_{GS} - V_{th}) V_{DS} - \frac{V_{DS}^2}{2} \right]$$



 $W_{eff}$ =circonference of Fin (2H<sub>Fin</sub>+W) 10.

### **GAA Nanowires to Nanosheets**



 $W_{eff}$ =circonference of Fin (2H<sub>Fin</sub>+W) 11.

### **Short-channel effects**

**Electrostatics of multi-gates MOSFET transistors** 



### **Short-channel effects**

**Electrostatics of multi-gates MOSFET transistors** 



Strong reduction of DIBL for Gate-all-around nanowire.
 → Optimal electrostatics control!

### **Short-channel effects**

**Electrostatics of multi-gates MOSFET transistors** 



• GAA Nanosheets (thin and wide wires) show intermediate DIBL between NW and FinFET. DIBL depends on wire width (W).

### **Tradeoff between SCE and W<sub>eff</sub>**



 GAA stacked-nanosheets maximize W<sub>eff</sub> (drive current) per layout footprint with improved channel electrostatics.

### **Power/Perf. Optimization**



GAA Nanosheet transistors offers more freedom to designers for the power-performance optimization thanks to a fine tuning of the device width.

### Parasitic capacitances and delay





 $C_{eq}$  is reduced for NWs (W=7nm) but no delay reduction is achieved, while performance can be significantly improved for nanosheet design having wider wires. A delay reduction of around 20% is expected for W<sub>NS</sub>~30nm

### **Number of Stacked-GAA NS**

![](_page_17_Figure_1.jpeg)

Saturation of  $\tau_p$  reduction when the number of stacked nanowires increase (I<sub>eff</sub> increase from N to N+1 is close to C<sub>eq</sub> increase).

### **Electron mobility in NW/NS**

![](_page_18_Figure_1.jpeg)

In GAA NanoSheet,  $\mu_{electron}$  is increased due to high mobility in the (100) plan.

### **Hole mobility in NW/NS**

![](_page_19_Figure_1.jpeg)

Horizontal GAA NS for n-FETs and vertical GAA NS for p-FETs turn out to be the most effective solutions to promote electron and hole transport, respectively.

### Outline

- Performance/Design consideration
- Device Fabrication
  - Inner spacer
  - SiGe S/D
- Strain Characterization
  - Precession Electron Diffraction
- Perspectives
- Summary and Conclusion

![](_page_21_Figure_1.jpeg)

22.

#### Vertically stacked wires FETs Process-Flow

Superlattice (SiGe/Si) **Fin Patterning Dummy Gate Deposition** & RIE Spacer Deposition and RIE **Inner spacer formation** Source/Drain Epitaxy ILD & CMP **Dummy Gate Removal** Formation of Suspended NW (release of NW) **Gate Stack Formation Contact/BEOL** 

![](_page_22_Picture_3.jpeg)

#### (Si/SiGe) Multi-layers

![](_page_22_Figure_5.jpeg)

#### Vertically stacked wires FETs Process-Flow

Superlattice (SiGe/Si) **Fin Patterning Dummy Gate Deposition** & RIE Spacer Deposition and RIE **Inner spacer formation** Source/Drain Epitaxy ILD & CMP **Dummy Gate Removal** Formation of Suspended NW (release of NW) **Gate Stack Formation** Contac/BEOL

![](_page_23_Figure_3.jpeg)

S. Barraud & al. (IEDM 2016)

Individual and dense arrays of fins were patterned to fabricate stacked wires FETs. 40 nm Fin pitch / 60 nm height / 20 nm width

#### Vertically stacked wires FETs Process-Flow

Superlattice (SiGe/Si) **Fin Patterning Dummy Gate Deposition** & RIE **Spacer Deposition and RIE Inner spacer formation** Source/Drain Epitaxy ILD & CMP **Dummy Gate Removal** Formation of Suspended NW (release of NW) **Gate Stack Formation** Contac/BEOL

SiO<sub>2</sub>/Poly-Si Dummy Gate

![](_page_24_Figure_4.jpeg)

spacer

#### **Not different that FinFET**

#### Vertically stacked wires FETs Process-Flow

Superlattice (SiGe/Si) Fin Patterning **Dummy Gate Deposition** & RIE Spacer Deposition and RIE **Inner spacer formation** Source/Drain Epitaxy ILD & CMP **Dummy Gate Removal** Formation of Suspended NW (release of NW) **Gate Stack Formation** Contac/BEOL

#### **Definition and benefit of inner spacer ?**

![](_page_25_Figure_4.jpeg)

#### Vertically stacked wires FETs Process-Flow

Superlattice (SiGe/Si) **Fin Patterning Dummy Gate Deposition** & RIE **Spacer Deposition and RIE Inner spacer formation** Source/Drain Epitaxy ILD & CMP **Dummy Gate Removal** Formation of Suspended NW (release of NW) Gate Stack Formation Contac/BEOL

#### After the Fin recess

![](_page_26_Picture_4.jpeg)

![](_page_26_Picture_5.jpeg)

![](_page_26_Picture_6.jpeg)

27.

#### Vertically stacked wires FETs Process-Flow

Superlattice (SiGe/Si) **Fin Patterning Dummy Gate Deposition** & RIE Spacer Deposition and RIE **Inner spacer formation** Source/Drain Epitaxy ILD & CMP **Dummy Gate Removal** Formation of Suspended NW (release of NW) **Gate Stack Formation** Contac/BEOL

#### Second step

![](_page_27_Figure_4.jpeg)

#### Etch depth profile with Si 7nm and SiGe 8nm

![](_page_27_Figure_6.jpeg)

#### Vertically stacked wires FETs **Process-Flow**

Superlattice (SiGe/Si) **Fin Patterning Dummy Gate Deposition** & RIE Spacer Deposition and RIE **Inner spacer formation** Source/Drain Epitaxy ILD & CMP **Dummy Gate Removal** Formation of Suspended NW (release of NW) **Gate Stack Formation** Contac/BEOL

![](_page_28_Figure_3.jpeg)

The depth of the SiGe recess was adjusted to match the thickness of future inner spacers

#### Vertically stacked wires FETs Process-Flow

Superlattice (SiGe/Si) **Fin Patterning Dummy Gate Deposition** & RIE **Spacer Deposition and RIE Inner spacer formation** Source/Drain Epitaxy ILD & CMP **Dummy Gate Removal** Formation of Suspended NW (release of NW) **Gate Stack Formation** Contac/BEOL

#### S. Barraud & al. (IEDM 2016)

![](_page_29_Picture_4.jpeg)

L<sub>G</sub>=20nm Spacer=9nm T<sub>Si</sub>=12nm T<sub>SiGe</sub>=12nm

![](_page_29_Picture_6.jpeg)

IBM N. Loubet & al. (VLSI 2017)

GAA nanosheet (x3) T<sub>Si</sub>=5nm T<sub>SiGe</sub>=10nm 44/48 CPP ground rules

Which benefits for parasitic capacitances? 30.

### **Benefit of inner spacer**

Inner spacer is crucial for reducing intrinsic capacitances and to improve dynamic perf. L. Gaben & al., ECS (2016)

![](_page_30_Figure_2.jpeg)

The benefit of inner spacer is higher as the width is increased  $\rightarrow$  30-40% reduction of C<sub>gd</sub> (W=20/30nm)

#### Vertically stacked wires FETs Process-Flow

Superlattice (SiGe/Si) **Fin Patterning Dummy Gate Deposition** & RIE Spacer Deposition and RIE Inner spacer formation Source/Drain Epitaxy ILD & CMP **Dummy Gate Removal** Formation of Suspended NW (release of NW) **Gate Stack Formation** Contac/BEOL

![](_page_31_Picture_3.jpeg)

![](_page_31_Picture_4.jpeg)

In-situ Boron doped SiGe(:B) Source/Drain In-situ Phosphorus doped Si(:P) Source/Drain

J. M. Hartmann et *al.*, Thin Solid Films, 520, p. 3185, 2012. J. M. Hartmann et *al.*, Solid State Electronics, 83, p. 10, 2013.

# Wide variety of stacked-wires

#### **NW/NS Cross-section**

LETI S. Barraud & al., IEDM 2016

![](_page_32_Picture_3.jpeg)

#### **Along source-drain direction**

![](_page_32_Figure_5.jpeg)

# **Strain characterization**

Superlattice (SiGe/Si)

#### **Fin Patterning**

1. 2.

**3.** O

Dummy Gate Deposition & RIE

Spacer Deposition and RIE

Inner spacer formation

- Source/Drain Epitaxy
- ILD & CMP

Dummy Gate Removal

Formation of Suspended NW (release of NW)

Gate Stack Formation

Contac/BEOL

Strain engineering is another key factor for stacked-wires FETs.

Strain maps were obtained by TEM using Precession Electron Diffraction technique\*

- \* M.P. Vigouroux et *al.*, APL **105**, 191906 (2014)
- \* D. Cooper et *al.*, Nano Lett. **15**, 5289 (2015)

Is initial strain (substrate-induced strain) can be used to boost performances?

### **Strain characterization**

#### (s)SOI substrate for n-FETs

![](_page_34_Figure_2.jpeg)

# Blanket wafer – strained-SOI substrate (~1.4-GPa biaxial stress)

## **Strain characterization**

(SiGe/Si) Superlattices (×3 tensile strained Si channels)

![](_page_35_Figure_2.jpeg)

Here, the growth was made on a (*s*)SOI (~1.4-GPa biaxial stress) substrate in order to have ×3 tensile strained Si channels for *n*-FETs.

### **Blanket wafer data**

#### In-plane deformation (ε<sub>xx</sub>)

![](_page_36_Figure_2.jpeg)

The substrate induced-strain (~1.4-GPa biaxial stress:  $\varepsilon_{xx}=0.77\%$ ) is well transferred in the stack.

## Fin patterning data

![](_page_37_Figure_1.jpeg)

38.

## Si Source/drain data

In-plane ( $\varepsilon_{xx}$ ) PED deformation maps of stacked-wire transistor. Here, inner spacer and Si source/drain are considered.

![](_page_38_Figure_2.jpeg)

The silicon channels as well as the source and drain are unstrained → A deformation close to 0% is observed

## Si Source/drain data

In-plane ( $\epsilon_{xx}$ ) PED deformation maps of stacked-wire transistor. Here, inner spacer and Si source/drain are considered.

![](_page_39_Figure_2.jpeg)

Full strain relaxation of sacrificial Si<sub>0.7</sub>Ge<sub>0.3</sub> layer after the Fin recess

An initial strain (substrate-induced strain) is useless

## SiGe:B Source/drain data

In-plane ( $\epsilon_{xx}$ ) PED deformation maps of stacked-wire transistor. Here, inner spacer and SiGe source/drain are considered.

![](_page_40_Figure_2.jpeg)

Optimized engineering of process-induced stress techniques such as SiGe S/Ds (for *p*-FET) can be efficient in 3D stacked-NWs devices

## Outline

- Performance/Design consideration
- Device Fabrication
  - Inner spacer
  - SiGe S/D
- Strain Characterization

   Precession Electron Diffraction
- Perspectives
- Summary and Conclusion

### Today u-dense nanowire in industry (poly Si)

![](_page_42_Figure_1.jpeg)

### Next step ...

To switch to crystalline nanowires?

To mix 3D logic & 3D memories ?

• Both ?

### **Replace Si by 2D materials?**

#### Feasibility of Mo(W)S2 synthesis ALD demonstrated

Screening of dedicated precursors, H2S free

![](_page_44_Picture_3.jpeg)

![](_page_44_Picture_4.jpeg)

# Summary

- Fabrication of vertically stacked Nanosheet MOSFETs (RMG process) are now demonstrated (inner spacers, SiGe:B S/D, 44/48 CPP)
- Horizontal GAA Nanosheet also have the advantage of being fabricated with minimal deviation from FinFET (FF) devices in contrast to vertical NWs which require more disruptive technological changes
- Strain characterization at different steps of fabrication (PED) Efficiency of process-induced strain (SiGe S/D) → significant compressive strain (~0.5 to 1%) in top and bottom Si p-channels
- Design flexibility: Nanosheet transistors offers more freedom to designers for the power-performance optimization thanks to a fine tuning of the device width.

# Thank You for your attention

This work was partly funded by the French Public Authorities through the NANO 2017 program. It is also partially funded by the SUPERAID7 (grant N° 688101) project