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Context of this work

22nm INTEL

14nm INTEL
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14nm SAMSUNG

3D FinFET

2D FDSOI

28nm ST

22nm GF

Back-gate control using 
thin BOX capacitive

Single-gate reduction 
of SCE controlled by 
thinner TSi or TBOX
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New MOSFET 
architectures 
need to be 
proposed

Two main MOSFET architectures for advanced CMOS

10nm INTEL
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Context of this work

Recent press release
May │ 2017
Samsung set to lead the future of foundry with comprehensive process roadmap down to 4nm
4LPP (4nm Low Power Plus): 4LPP will be the first implementation of next generation device 
architecture – MBCFETTM structure (Multi Bridge Channel FET). MBCFETTM is Samsung’s unique 
GAAFET (Gate All Around FET) technology that uses a Nanosheet device to overcome the 
physical scaling and performance limitations of the FinFET architecture.
https://news.samsung.com/global/samsung-set-to-lead-the-future-of-foundry-with-
comprehensive-process-roadmap-down-to-4nm

June │ 2017
IBM claims 5nm Nanosheet breakthough
IBM researchers and their partners have developed a new transistor architecture based on Stacked 
Silicon Nanosheets that they believe will make FinFETs obsolete at the 5nm node
http://www.eetimes.com/document.asp?doc_id=1331850&

GAA MOSFET devices are becoming an industrial reality
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Motivation

14nm INTEL [1]

Fin FETs GAA Wire FETs

[2] H. Mertens et al., VLSI Technology, 2016.
[1] S. Natarajan et al., IEDM, 2014.

IMEC [2]

• Wire FETs can be view as an 
evolutionary step from the FinFET
• Wire FETs share many of the same 
process steps as the FinFET
• GAA FETs provides a better 
electrostatics than FinFET
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Introduction – Goals and Strategy
Main Objective of SUPERAID7
Simulation of the impact of systematic and statistical process variations on devices, 
interconnects and circuits down to the 5nm node

WP1
Project 

managment

Dissemination (WP6) and exploitation (WP7)

WP3: Variation-
aware equipment

and process
simulation

WP4: Variation-
aware device and 

interconnect
simulation

WP5: Software integration and compact models

WP2: Specifications and benchmarks
Define specifications for two generations of devices (7nm Trigate and 5nm 
GAA Stacked-Wires FETs) – process-flow/morphological data/electrical data…

→ to provide input data for the calibration/validation of simulation tools
→ to give a feedback to other WP after the comparison between simulation 
and experiment
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Performance and Design Consideration
FinFET (FF) Nanowire (NW)

Nanosheet (NS)

Triple Stack (3S)
×3GAA 

Single Stack (2S) ×3GAA

HFinHFin

HFin

Double Stack (1S) ×3GAA

FF
FP=25nm
HFin=43nm
WFin=7nm TS

Nanosheet (NS)

HFin
TSTS

NW
FP=25nm
HFin=43nm
TS=8nm
HNW=6.3nm
WNW=7nm

NS
HFin=43nm
HNS=6.3nm
WNS>WNW
TS=8nm

S

S
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Effective width of FinFET
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FinFET versus GAA Nanowires
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GAA Nanowires versus GAA Nanosheets
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Tradeoff between SCE and Weff
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Power/Performance Optimization
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Parasitic capacitances and delay

A delay reduction of around 20% is expected for WNS~30nm
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: Delay
Ieff: Effective drive current
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What have we learned?

GAA NS structures could be used to maximize the effective 
width which will improve the drive current without increasing 
power density (lower DIBL than in short-channel FinFET
devices).

A delay reduction of around 20% is expected for WNS~30nm

Nanosheet transistors offer more freedom to designers for the 
power-performance optimization thanks to a fine tuning of the 
device width
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Process Flow of GAA Stacked Wires FETs

* Blue module: specific technical requirements 
for stacked wires FETs (as compared to FinFET
devices)

(a) (b) (c)

(d) (e) (f)

(g) (h)

(a)
(b)

(c,d,e)

(f)

(g)

(h)
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Device Fabrication – (Si/SiGe) multilayer

SOI substrate
SiGe/Si epitaxy
Fin patterning (SIT process)
Dumy gate deposition / CMP
Dummy gate patterning
Inner/Outer spacer formation
In-situ doped (Si:P) source/drain
ILD deposition / CMP
Dummy gate removal
Release of Si NW (SiGe etching)
Gate dielectric (HfO2 2nm)
TiN deposition
Fill metal (W) deposition / CMP
Self-aligned contact (SAC) + 
M1 BEOL

n

)

Epitaxial growth of (Si0.7Ge0.3/Si) multilayers

Vertically Stacked GAA Si Nanosheet FET

S. Barraud et al., IEDM 2016
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Device Fabrication – Fin patterning

TEM images after etching of (Si/SiGe) fins. Two types of fins patterning were used: 
(Left) single-Fin process and (Right) dense arrays of fins with a SIT process. Our 
SIT-based patterning technique yields 40 nm-pitch fins which are 60 nm high and 
20 nm wide for both Si and SiGe channels
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Device Fabrication – Outer/Inner Spacer

Slide 20 S
V

Vertically Stacked GAA Si Nanosheet FET
(a) Anisotropic etching of (Si0.7Ge0.3/Si) multilayers

(b) Selective etching of Si0.7Ge0.3

(c) Deposition/etching of SiN

50nm
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Device Fabrication – RMG module
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Vertically Stacked-Wires FETs

NW NS

NW/NS Cross-section

Along source-drain direction

Si channel

Si channel

Inner spacer

SiGe SiGe

Short-LG (20nm) Long-LG (>300nm)

After HfO2/TiN/W deposition (LG=200nm) 

S. Barraud et al., IEDM 2016
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Simulation of Device Fabrication (WP3)

• LETI data (SEM, TEM, strain 
mapping, …) provided for the 
calibration/validation of process 
simulation
• Identification of relevant 
process parameter for variability
• Influence of process parameters 
on electrical performance of 3D 
devices

Fraunhofer IISB
TU Wien
Synopsys
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Strain Characterization

* M.P. Vigouroux et al., APL 105, 191906 (2014)

Strain maps were obtained by TEM
using Precession Electron
Diffraction technique*

* D. Cooper et al., Nano Lett. 15, 5289 (2015)

Strain engineering is another key
factor for stacked-wires FETs.

Is initial strain 
(substrate-induced 
strain) can be used to 
boost performances?

1.
2.

3.

4.
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Strain Characterization

The silicon channels as 
well as the source and 
drain are unstrained

A deformation close 
to 0% is observed

Optimized engineering 
of process-induced 
stress techniques can 
be efficient in 3D 
stacked-NWs devices 

Deformation maps acquired by PED after Si Source/Drain 

Deformation maps acquired by PED after SiGe Source/Drain 

S. Barraud et al., IEDM 2016
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What have we learned?

Horizontal GAA NW and NS also have the advantage of being 
fabricated with minimal deviation from FinFET (FF) devices in 
contrast to vertical NWs which require more disruptive 
technological changes.

The benefits of epitaxially regrown SiGe:B S/D junctions was 
evidenced, with a significant compressive strain (~1%) injected in 
top and bottom Si p-channels → need to be extrapolated at 5nm 
design rules.

Process Simulation well reproduces morphological characterization 
→ relevant process parameter can now be used for variability 
studies.
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Electrical Characterization

The CV curves, obtained from a
multi-fingers gate and an array
(#120) of stacked wires
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Electrical Characterization
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Electrical Characterization
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Electrical Characterization
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Conclusions and Outlook
Fabrication of vertically stacked Nanosheet MOSFETs (RMG process) are 
now demonstrated (inner spacers, SiGe:B S/D, 44/48nm CPP - IBM).

Horizontal GAA Nanosheet also have the advantage of being fabricated 
with minimal deviation from FinFET (FF) devices in contrast to vertical 
NWs which require more disruptive technological changes.

Strain characterization at different steps of fabrication (PED) 
Efficiency of process-induced strain (SiGe S/D) significant 
compressive strain (~0.5 to 1%) in top and bottom Si p-channels.

Design flexibility: Nanosheet transistors offer more freedom to designers 
for the power-performance optimization thanks to a fine tuning of the 
device width. 

Morphological/Electrical data provided to partners for the calibration & the 
validation of advanced simulation tools. 
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Thank you!


