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Introduction – Goals and Strategy

 Copper-based metallization in use at least down to 7nm node

 Nanoscale Cu behavior is influenced by grain size and surface roughness

 Simulations of nano-interconnects lack a connection between modeling the 
individual interfaces and the continuum simulation of the entire interconnect

 True for both conductivity and electromigration reliability

 Our goal is to provide simulations to

 Better understand electron and atom movement inside nanoscale Cu

 Using Monte Carlo simulations

 Provide simplified simulation options, while avoiding complex meshes

 Using spatial parameters in FEM framework
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Introduction – Project Context

 This work fits into WP4, 
dealing with variation-aware 
interconnect simulations

 The goal is to provide a link 
between grain boundary/ 
surface roughness and 
continuum simulations

 Primarily concentrating on 
copper conductivity and 
electromigration reliability

Slide 6 SUPERAID7 Workshop “Process 
Variations from Equipment Effects to 
Circuit and Design Impacts”
September 3, 2018, Dresden

Outline

 Introduction

 Copper Conductivity

 Electron Scattering Mechanisms

 Electron-Electron

 Surface Roughness

 Grain Boundary

 Electromigration Reliability

 Conclusions and Outlook



Slide 7 SUPERAID7 Workshop “Process 
Variations from Equipment Effects to 
Circuit and Design Impacts”
September 3, 2018, Dresden

Copper Conductivity

 Cu interconnect scaling results in reduced dimensions

 Surface roughness and grain boundary play an increasing role

G. Schindler, Sematech workshop on Cu resistivity 
(2005)

T. Sun, PhD Dissertation, U of Central Florida (2009)
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Electron Scattering in Metals

 Cu interconnect scaling results in reduced dimensions

 Surface roughness and grain boundary play an increasing role

L. Filipovic et al., SISPAD (2017)
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Electron Scattering in Metals

 The effects of the granular microstructure on resistivity is modeled by

J.S. Clarke et al., VLSI Symposium (2014)
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Electron Scattering in Metals

 Classical macroscopic model for electron transport

 Scattering events are independent of each other

 Calculate each event separately, then sum to give total probability

 Microscopic models for electron transport

 Physical semiconductor models have matured over many decades

 Modern physical models of transport in metals is far from mature

 Use lessons learned from semiconductor transport (heavily doped)

 Semiconductor: Moving electrons occupy states above conduction band

 Metals: Moving electrons in a half-occupied band near the Fermi energy
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Equilibrium Electron Statistics I

 Quantum state of an electron is characterized by 
the quantum number ݇ and energy ߳ሺ݇ሻ

 Equilibrium electron statistics center around the Fermi-Dirac distribution:

 ζ is the chemical potential, which is a large positive quantity
for a many-particle system
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Equilibrium Electron Statistics II

 Given the Pauli exclusion principle, the average number of electrons ܰ can be 
determined as a sum of probabilities of given states to be occupied

where ݇- states are discrete and 2 accounts for the Pauli exclusion principle

 A single state per volume of Fermi sphere 
௏

ଶగ య

 Given 3D parabolic energy dispersion, the density of states is
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Equilibrium Electron Statistics III

 Normalizing with ξ ൌ ζ ݇஻ܶ⁄ and ݔ ൌ ϵ ݇஻ܶ⁄ we obtain the ½ Fermi integral

 And the Fermi energy is obtained
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Equilibrium Electron Statistics IV

 Relevant copper properties for electron statistics:

 Total electron density and the Fermi energy are then solved to give

Parameter Symbol Value

Density ρ 8.960 g/cm3

Atomic mass ma 63.546 kg/mole

Permittivity ε 8.85419 x 10-12 F/m

Effective mass m* 1.0 me = 911 x 10-31 kg
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Equilibrium Electron Statistics V

 In semiconductors the bottom of the conduction band is above the chemical 
potential and serves as the origin of the energy

 In metals the number of free electrons taking part in conduction are those 
within a thin energy band around the Fermi energy

 Generated electron energies are assigned within the range ሾ݁ி െ ݁௡ ∶ ݁ி ൅ ݁௡ሿ
according to the FD distribution
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Equilibrium Electron Statistics VI

 We used two MC techniques to solve the previous equation and generate the 
conducting electrons and their energies.

߳௡ ൌ 3݇஻ܶ ߳௡ ൌ 5݇஻ܶ ߳௡ ൌ 10݇஻ܶ

Improved simulation accuracy
Increased simulation time and effort



Slide 17 SUPERAID7 Workshop “Process 
Variations from Equipment Effects to 
Circuit and Design Impacts”
September 3, 2018, Dresden

Scattering Mechanisms: Electron-Electron

 Electron-electron scattering depends on the electron density, applied field, 
energy, etc.

 It does not significantly increase at reduced dimensions

 In our simulator EE scattering is applied using a scattering time τee, 
calculated using the classical definition of the conductivity baseline:

 With a bulk resistivity of 1.7 x 10-8 Ωm	the scattering time is τee = 2.64 x 10-14 s
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Scattering Mechanisms: Surface Roughness I

 Heuristic models associate to specular scattering, 
where the incident and reflected angels are equal

 Roughness results in randomization of the reflected angle
of the scattered electron

 We set a parameter γ which determines the ratio between the specular and 
random scattering events

0	 ൑ ߛ	 ஍ݎ ൑ 1, where Φ ஍ݎ = 0 defines the surface of the boundary
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Scattering Mechanisms: Surface Roughness II

 Comprehensive models account for stochastic properties of the roughness, 
based on the Fermi Golden Rule

 Probability S is given for a transition per unit time from an initial state |݇ۧ
defined by quantum numbers ݇ and energy ܧ௞, to a state ݇′ under the action of 
a perturbing Hamiltonian ܪ′:

 Here the ߜ function accounts for the energy conservation of the interaction 
with the surface roughness potential ܪ′
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Scattering Mechanisms: Grain Boundaries

 An electron, interacting with a grain boundary has a probability of
reflection R or transmission (1 - R)

 A combination of specular and diffusive reflection represents the physical 
reflection from a grain boundary

 Electron energy loss during reflection or transmission should also be included
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Scattering Mechanisms: Grain Boundaries
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Electromigration in Copper: Failure Modes

 Time to failure due to electromigration is a combination of two failure modes:

R.L. de Orio et al., Microelectron. Rel. (2011)

Early failure mode:
 E‐field causes movement of ions
 Ion transport forms vacancy/hillock
 Vacancy and hillock induce stress
 Critical stress causes crack/failure

Late failure mode:
 Critical stress causes void nucleation
 Nucleated void grows to relieve stress
 Void growth increases line resistance
 Fails at critical resistance/open circuit
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Electromigration in Copper: Early Failure Mode

 Early failure mode is a combination of

 Vacancy transport (anode to cathode) forming voids/hillocks

 Resulting tensile (cathode) and compressive (anode) stress
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Electromigration in Copper: Scaling

 Shrinking dimensions 
result in increased current 
densities

 Experiments show 
increased grain boundaries 
reduce expected lifetimes

L. Filipovic et al., SISPAD (2017)

An electromigration model 
must include the effects of 
material interfaces and 

grain boundaries
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Electromigration in Copper: Model I
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Electromigration in Copper: Model II

Paramete
r

Ea (eV) Dv0 (cm
2/s)

Grain 0.89 0.52

GB 0.7 52

MI 0.5 520R.L. de Orio et al., Microelectron. Rel. (2011)

௩ܦ ൌ ௩଴expܦ
ாೌ
௞ಳ்
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Electromigration in Copper: SOA

 Microstructure treated using 
predefined geometries for 
GB and MI

 Must know location of all 
grain boundaries

 Mesh must be very fine, 
especially at triple points

M. Rovitto, PhD Dissertation TU Wien (2016)
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Electromigration in Copper: Modeling Approach I

 Developed approach:

 Treat microstructure using a spatial material parameter to define 
GBs, MIs, and Cu grains, applied to:

 Conductivity, Vacancy diffusivity, Effective valence Z*

 Apply the vacancy generation/annihilation term at GB/MIs

L. Filipovic et al., SISPAD (2018)
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Electromigration in Copper: Modeling Approach II

 Developed approach:
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Electromigration in Copper: Grain Tessellation

 Grain tessellation

 Using an average grain size, set total number of grains (seeds)

 Randomly place seeds in the copper line and grow until filled

L. Filipovic et al., SISPAD (2018)
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Electromigration in Copper: Parameter Assignment I

L. Filipovic et al., SISPAD (2018)
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Electromigration in Copper: Parameter Assignment II

L. Filipovic et al., SISPAD (2018)
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Electromigration in Copper: Simulation Results I

Current density (MA/cm2)

 Current density variation when 1MA/cm2 is applied (bulk vs microstructure):

The effects of microstructure are immediately evident!

L. Filipovic et al., SISPAD (2017)
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Electromigration in Copper: Simulation Results I

Normalized vacancy concentration (Cv/Cv0 - 1)

 Vacancy concentration at 0.1ms when 1MA/cm2 at 300°C is applied
(bulk vs microstructure):

Vacancies accumulate much faster due to the GBs and MIs

L. Filipovic et al., SISPAD (2017)
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Electromigration in Copper: Simulation Results I

 Electromigration simulations using different mesh resolutions were performed

 Geometry: 2000 x 20nm, grain size 25nm

 Electromigration setup: 1MA/cm2 current density applied at 300°C

 Vacancy concentration at onset of electromigration:

L. Filipovic et al., SISPAD (2018)
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Electromigration in Copper: Simulation Results II

 Electromigration simulations using different mesh resolutions were performed

 Even coarse grids show reasonable results for the vacancy concentration

 Bulk parameters underestimate the time at which EM effects initiate
L. Filipovic et al., SISPAD (2018)
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Electromigration in Copper: Simulation Results III

 Electromigration simulations using different mesh resolutions were performed

 Underestimated stress values with increasing grid size

L. Filipovic et al., SISPAD (2018)
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Conclusions and Outlook

 As interconnects shrink grain boundaries and material interfaces play 
increasing roles in copper conductivities and reliability

 A Monte Carlo model was developed to include electron scattering 
mechanisms in metal lines

 Model is based on semiconductor knowledge developed over decades

 Will be implemented and released in an open simulator from TU Wien

 The effect of microstructure on interconnect lifetime is examined

 Treat grain boundaries and material interfaces as parameters

 Introduced spatial parameters within a finite element framework

 Conductivity, atom diffusivity, activation energy …

 Model will enable variation to be introduced to complex EM simulations


