

ECSEL Way2GoFast project

- UTBB FDSOI technology applications expand from Digital to mixed Digital-Analog-RF-mmW circuits
 - Market segments include Automotive, Connectivity, IoT, ...
- Device Figures-of-merits (FoMs) addressed are multiple
 - Energy consumption remains as driving design parameter
 - Digital: Low dynamic power at given frequency, Low static power
 - Analog: Analog Gain, Variability (Matching, SCE), at low current
 - RF-mmW: High frequency response preserved at low voltage/low current
- Within ECSEL Way2GoFast project, during 2015 2017, 2 important developments were conducted in order to extend 28nm FDSOI technology applications to Low Power Digital-Analog-RF
 - · Statistical Variability analysis, in cooperation with SYNOPSYS
 - · Leti-UTSOI model enhancement for Low Power, in cooperation with CEA Leti

SUPERAID7 Workshop "Process Variations from Equipment Effects to Circuit and Design Impacts" September 3, 2018, Dresden

A.Juge & al. Statistical Variability analysis in 28nm FDSOI devices

Ultra-Thin Buried oxide

Variability Impact on Low Power Circuit Design

- SV experiments in UTBB FDSOI
- Reduced Vdd or Id for Low Power
- Implies Near-Threshold operation
- SV impact x 3 from upper limit to lower limit of moderate inversion
- Objectives:
 - · Device variability analysis
 - Model accuracy for circuit design throughout voltage range

SUPERAID7 Workshop "Process Variations from Equipment Effects to Circuit and Design Impacts" September 3, 2018, Dresden

Outline

Presentation

Introduction to project Way2GoFast

Statistical Variability analysis in 28nm FDSO Characterization (Physical - Electrical)

TCAD device calibration (Physical - Electrical) GARAND device calibration Variability simulation with GARAND Device analysis

Model for Circuit Design

Summary

SUPERAID7 Workshop "Process Variations from Equipment Effects to Circuit and Design Impacts" September 3, 2018, Dresden

A.Juge & al. Statistical Variability analysis in 28nm FDSOI devices

SYNOPSYS

Silicon to Software

MGG

augme

LER

SV Characterization: Approach

- Objective
 - · To rely on most complete and consistent data set
 - Physical and Electrical characterization techniques
- Physical
 - Line Width/Edge Roughness (LWR/LER)
 - Metal Grain Granularity (MGG). Grain size & Orientation.
 - Body Thickness Variation (BTV)
 - Some unknowns remain
 - Random Discrete Dopants (RDD) -> Discrete profile determined by Garand from calibrated continuous doping profiles
 - MGG work-function values -> calibrated through variability simulation process
 - Statistical impact of trapped charges at the interfaces of the thin body channel

Electrical

• I(V) data from transistor array (256 pairs of DUT distributed in one direction), 1 die

SUPERAID7 Workshop "Process Variations from Equipment Effects to Circuit and Design Impacts" September 3, 2018, Dresden

A.Juge & al. Statistical Variability analysis in 28nm FDSOI devices

Gife Control Una Thin Buried oxide by Garand from

BTV

Identification of median DUT

Sentaurus Device calibration: Electrostatic

Sentaurus Device Calibration: Transport

SUPERAID7 Workshop "Process Variations from Equipment Effects to Circuit and Design Impacts" September 3, 2018, Dresden

A.Juge & al. Statistical Variability analysis in 28nm FDSOI devices

10

Outline

Presentation

Introduction to project Way2GoFast

Statistical Variability analysis in 28nm FDSO

Characterization (Physical - Electrical) TCAD device calibration (Physical - Electrical) **Garand device calibration** Variability simulation with Garand Device analysis

Model for Circuit Design

Summary

SUPERAID7 Workshop "Process Variations from Equipment Effects to Circuit and Design Impacts" September 3, 2018, Dresden

A.Juge & al. Statistical Variability analysis in 28nm FDSOI devices

SYNOPS

Silicon to Software

augr

Simulation with Garand

- Device structure
 - Sentaurus 2D structure extended to 3D
 - · Mesh refinement for regions (interfaces) exposed to LER and BTV
- Calibration strategy
 - Reference data: Device simulations from Sentaurus
 - Calibration Targets for Enigma tool
 - Charge distribution at middle of channel (density gradient DG)
 - Inversion charge Ninv vs Vgate voltage
 - · Id (Vgate) at low and high Vd voltage for mobility fitting
 - Verification Cgg vs Vgate

SUPERAID7 Workshop "Process Variations from Equipment Effects to Circuit and Design Impacts" September 3, 2018, Dresden

Device structure 13

- Short gate length device extruded to 3D (left)
- Mesh refinement for regions exposed to LER and BTV (right)

SUPERAID7 Workshop "Process Variations from Equipment Effects to Circuit and Design Impacts" September 3, 2018, Dresden

A.Juge & al. Statistical Variability analysis in 28nm FDSOI devices

SAUDLSAZ

Silicon to Software

Created Automated Garand Calibration flow for FDSOI technologies

SUPERAID7 Workshop "Process Variations from Equipment Effects to Circuit and Design Impacts" September 3, 2018, Dresden

Electrical inputs for Garand calibration ____

Local Variability inputs for Garand

Source	Parameter	comment	
RDD	Supplied profile	Discretization by Garand	6e - 09
MGG	Average grain diameter	TEM data	$_{4e-09}$ Uncorrelated axis
	Orientation probability	TEM data	2e - 09
	Orientation Wf_delta	Literature for <111> & <200>, otherwise adjusted	
LER	RMS	LER data	-2e - 09
	LCOR	Best-guess	-4e-09
BTV	RMS	DRM/AFM data + adjust.	$-6e - 09 \begin{bmatrix} \bullet & \bullet \\ -6e - 09 - 4e - 09 - 2e - 09 & 0.0 & 2e - 09 & 4e - 09 & 6e - 09 \end{bmatrix}$
	LCOR	Best-guess	ler_l

Unknown parameters updated through iterative variability simulation (3-4)

• Enigma had to manage 2000 statistical simulations per iteration

SUPERAID7 Workshop "Process Variations from Equipment Effects to Circuit and Design Impacts" September 3, 2018, Dresden

A.Juge & al. Statistical Variability analysis in 28nm FDSOI devices

18

Statistical Variability Analysis (nMOS)

Simulation/Hardware FOMs variations and correlations (normalized)

Sources contribution	σVT_{LIN}	σVT_{SAT}	σDIBL	σ ION _{LIN}	σ ION _{SAT}
RDD	3	3	3	1	2
LER	4	4	3	4	4
MGG	1	1	2	3	1
BTV	2	2	1	2	3

SUPERAID7 Workshop "Process Variations from Equipment Effects to Circuit and Design Impacts" September 3, 2018, Dresden

Outline

Presentation

Introduction to project Way2GoFast

Statistical Variability analysis in 28nm FDSO

Model for Circuit Design

How gm/I accuracy serves statistical model accuracy? Leti UTSOI enhancements for gm/I

Summary

SUPERAID7 Workshop "Process Variations from Equipment Effects to Circuit and Design Impacts" September 3, 2018, Dresden

A.Juge & al. Statistical Variability analysis in 28nm FDSOI devices

How Gm/Id model accuracy serves statistical modeling?

Strong inversion

$$Ids \propto \beta \times (Vgs - Vth - Dibl \times Vds)^{a}$$

$$\left(\frac{\sigma_{Ids}}{Ids}\right)^2 = \left(\frac{\sigma_{\beta}}{\beta}\right)^2 + \left(\frac{gm}{Ids}\right)^2 \times [\sigma_{Vth}^2 + Vds \times \sigma_{Dibl}^2]$$

SYNOPSYS

Silicon to Software

augme

- Gm/Id is the amplification factor by which variability in electrostatics induces biasdependent variability of current
- Applies for whatever inversion regime
- Gm/Id accuracy helps variations modeling

Weak inversion

SDE

 $Ids \propto \beta \times \exp (Vgs - Vth - Dibl \times Vds) / (n \times ut))$

$$\left(\frac{\sigma_{Ids}}{Ids}\right)^2 = \left(\frac{\sigma_{\beta}}{\beta}\right)^2 + \left(\frac{gm}{Ids}\right)^2 \times \left[\sigma_{Vth}^2 + Vds^2 \times \sigma_{Dibl}^2 + (Vgs - Vth)^2 \times \left(\frac{\sigma_n}{n}\right)^2\right]$$

SUPERAID7 Workshop "Process Variations from Equipment Effects to Circuit and Design Impacts" September 3, 2018, Dresden

A.Juge & al. Statistical Variability analysis in 28nm FDSOI devices

[SISPAD 2016]

Leti UTSOI model enhancement for Gm/I 21

Mobility and series resistance model improvements

Leti UTSOI model enhancement for Gm/I

Improvement of accuracy in moderate inversion region

Summary 23

- Modelling for Low Power Analog-RF in 28nm FDSOI technology highlighted
 - Support of ECSEL JU Way2GoFast project
 - Cooperation between CEA Leti, Synopsys, and ST
- Physical/Electrical characterization methodologies suited for FDSOI devices
 - Some unknown parameters remain (Work-function values per grain orientation)
- Variability analysis with Garand
 - Provided well-calibrated TCAD deck, and set of physical/electrical variability data, Garand can
 predict the local variability, including key figure of merit sigmas and correlations
 - Tool chain capabilities were extended (MGG,..).
 - Enigma provides capability of reverse-engineering to provide physical inputs not available
 - Calibration methodology ensures consistent variability inputs for nMOS and pMOS devices
 - Comprehensive analysis of statistical variability observed in 28nm FDSOI device characteristics
 - · Classification of local variability sources provides guidance for LP device optimization

Leti-UTSOI model for Low Power Circuit Design

- · Accuracy in Gm/Id metric is valuable for Variability modeling
- Leti-UTSOI qualified for Low Power Analog-RF circuit design using 28nm FDSOI technology

SUPERAID7 Workshop "Process Variations from Equipment Effects to Circuit and Design Impacts" September 3, 2018, Dresden

A.Juge & al. Statistical Variability analysis in 28nm FDSOI devices

Acknowledgements

- ST: Y.Carminati, J.Franco, S.El Ghouli, G.Gouget, F.Monsieur, P.Normandon, K.Pradeep, D.Rideau, P.Scheer, A.Valery, M.Minondo, F.Arnaud, N.Planes
- CEA Leti: T.Poiroux, O.Rozeau, S.Martinie
- Synopsys: P.Asenov, C.Millar
- IMEP: G.Ghibaudo
- University of Glasgow: A.Asenov
- Fraunhofer Institute: J.Lorenz, E.Bär

