Leti-NSP model: SPICE model for advanced multigate MOSFETs

O. Rozeau, T. Poiroux, S. Martinie, J. Lacord, F. Triozon, S. Barraud and J.C. Barbé, CEA-Leti, Grenoble, France

ESSDERC/ ESSCIRC Workshop "Process Variations from Equipment Effects to Circuit and Design Impacts"

September 3, 2018, Dresden, Germany

SUPERAID7 Workshop "Process Variations from Equipment Effects to Circuit and Design Impacts" September 3, 2018, Dresden

Outline

- Introduction
- Innovative solution for SPICE modeling
- Quantum confinement and mobility models
- Model features
- Model validation
- Code and user's manual
- Conclusion and outlook

Introduction

Context: more Moore from International Roadmap for Devices and Systems

YEAR OF PRODUCTION	2017	2019	2021	2024	2027	2030	2033
	P54M36	P48M28	P42M24	P36M21	P32M14	P32M14T2	P32M14T4
Logic industry "Node Range" Labeling (nm)	"10"	"7"	ייציי	"3"	"2.1"	'1.5''	'4.0''
IDM-Foundry node labeling	i10-f7	i7-f5	i5-f3	i3-f2.1	i2.1-f1.5	i1.5-f1.0	i1.0-f0.7
Logic device structure options	finFET	finFET	LGAA	LGAA	LGAA	VGAA, LGAA	VGAA, LGAA
	FDSOI	LGAA	finFET	VGAA	VGAA	3DVLSI	3DVLSI
Logic device mainstream device	finFET	finFET	LGAA	LGAA	LGAA	VGAA	VGAA
DEVICE STRUCTURES							
LGAA = Vertically stacked NS/NW GAA MOSFET VGAA = Vertical NS/NW GAA MOSFET	FD-SOI	Lateral Nanowire	Lateral Nacowire	Lateral Nanowire	Lateral Nanowire	Monethie 30	Vertical Nanowire
From irds.ieee.org: More Moore report 2017				•			

edition

Advanced Gate All Around (GAA) MOSFET are introduced for sub-7nm nodes: require SPICE models for IC design

Introduction

Challenges of GAA MOSFET modeling

- 1. GAA MOSFET can have different shapes: cylindrical, rectangular (sheet)
- 2. In the case of stack-GAA: the nanowires /nanosheets can have size differences

Introduction

- Our solution is Leti-NSP model dedicated to advanced multigate MOSFET.
- Leti-NSP model can simulate:
 - Vertically stacked GAA MOSFET (nanosheet and/or nanowire)
 - Vertical channel GAA MOSFET (nanosheet and/or nanowire)
 - FinFET / Trigate MOSFET

Introduction

- Model's core: modeling of vertically stacked GAA is complex and challenging
- Main goals: find a compact formalism for
 - Accuracy: physical approach
 - CPU time efficiency: single instance
- Main difficulties:
 - the surface potential is not constant along the NW/NS perimeter
 - GAA can have different sizes: surface potentials are not the same for all GAA

Illustration of vertically stacked GAA MOSFET: 3 Nanosheets

Innovative Solution for SPICE Modeling

Concept of Leti-NSP model: GAA MOSFET architecture and its asymptotic cases

2 asymptotic cases: Symmetrical double gate and cylindrical GAA MOSFET

Innovative Solution for SPICE Modeling

Concept of Leti-NSP model: GAA MOSFET architecture and its asymptotic cases

Innovative Solution for SPICE Modeling

Innovative Solution for SPICE Modeling

Nanosheet GAA MOSFET partitioning

Innovative solution in NSP model: an unique effective surface potential is obtained by the resolution of an unified equation for nanosheet

Innovative Solution for SPICE Modeling

NSP-model can reproduced all GAA shapes <u>without</u> fitting parameters

Innovative Solution for SPICE Modeling

Case of stacked-nanosheet GAA MOSFET

The inversion charge is accurately and analytically modeled <u>without</u> fitting parameters

Quantum Confinement and Mobility Models

Case of stacked-nanosheet GAA MOSFET

ceatech

Variations from Equipment Effects to

Circuit and Design Impacts" September 3, 2018, Dresder

- Dedicated compact model for GAA MOSFET (IEDM'16)
- Triangular-potential approximation (Stern 72)
- Structural confinement has a stronger impact on Cinv in GAA than in planar bulk MOSFET

For Leti-NSP model: dedicated solution including accurate modeling of Cgg slope without fitting parameter for the user

Slide 14

Quantum Confinement and Mobility Models

MODEL versus Simulations: Stacked-NS MOSFET (IEDM'16)

Quantum Confinement and Mobility Models

Model evaluation: nfet

Quantum Confinement and Mobility Models

Model evaluation: pfet

Overview of Model Features

Overview of Model Features

Short channel effects

Model features: Leti-NSP model v1.0.0

Threshold voltage roll-off

L-scaling of mobility model

Drain Induced Barrier Lowering

Velocity saturation

Channel length modulation in saturation

Series resistances with bias dependence

Model Validation

September 3, 2018, Dresden

Ceatech

Example of drain current and transconductance versus gate

Model Validation

MODEL versus TCAD simulations from Leti

Example of drain current and drain conductance versus drain voltage

Model Validation

Note: other validations on hardware have been done but can't show here (confidential)

Model Validation

Leti-NSP model versus standard model requirements

Requirements	Leti-NSP	Comments	
Physical representation (currents, charges and derivatives)	٧	See previous slides	
2^{nd} and 3^{rd} continuous derivatives in all transitions and regimes	٧	Checked	
Symmetry and Gummel test	٧	See next slide	
Large signal analysis	٧	By model itself	
No model defects	٧	Not detected	
Model calculation efficiency	٧	Optimized code	
Physical and structurally meaningful model parameters	٧	Physical model	
Geometrical scaling	٧	Done	
Empirical parameters	٧	Similar to PSP model	
Model binning	V	Next release	
Model extraction efficiency	V	Optimized and checked on several extractions	
Operating Point output	٧	Done	

Slide 25

SUPERAID7 Workshop "Process Variations from Equipment Effects to Circuit and Design Impacts" September 3, 2018, Dresden

Model Validation

Leti-NSP mode: symmetry test at near to V_{ds}=0V

Gummel test is ok with all effects activated.

Code and User's Manual

Leti-NSP model: code and manual are available - ready for IC design

Conclusions and Outlook

- History:
 - Model development has been started in 2015
 - 6 versions were provided to our partners (use in PDK)
- For next releases, we plan to include:
 - binning parameters
 - noise models (Flicker, thermal and induced gate noise)
 - model for junction-less MOSFET (dev. on going)
 - non-quasi static effects
 - model for tunnel-FET (partially dev.)
- Leti-NSP model is available and compatible with the CMC requirement for standardization

